4/11/2022»»Monday

1x Slot

4/11/2022
PCI Express (PCIe, PCI-e) is a high-speed serial computer expansion bus standard.

Take a look at this picture of a PCI-Express x1 slot (at the end of a flexible extender) that was cut out to allow down-plugging a PCIe x16 card into it. I noticed that when people use a Dremel to cut the plastic, they tend to intuitively place the cutting disk along the longitudital axis, often damaging the pins in the slot because of the. All images and descriptions are for illustrative purposes only. Visual representation of the products may not be perfectly accurate. Product specification, functions and appearance may vary by models and differ from country to country. Problem 1: X16 vs X1 PCIe slots. The modern PC is generally designed with one or two X16 PCIe slots, and several PCIe X1 slots. When running complex graphical simulations or playing modern video games there is a need to move lots of data quickly between the main system’s bus and the GPU.

PCI Express as a high-bandwidth, low pin count, serial, interconnect technology. It was designed to replace the older PCI and AGPbus standards. PCIe has numerous improvements over the older standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance scaling for bus devices, a more detailed error detection and reporting mechanism (Advanced Error Reporting, AER), and native hot-swap functionality. PCI Express architecture provides a high performance I/O infrastructure for Desktop Platforms with transfer rates starting at 2.5 Giga transfers per second over a x1 PCI Express lane for Gigabit Ethernet, TV Tuners, Firewire 1394a/b controllers, and general purpose I/O. PCI Express architecture provides a high performance graphics infrastructure for Desktop Platforms doubling the capability of existing AGP8x designs with transfer rates of 4.0 Gigabytes per second over a x16 PCI Express lane for graphics controllers. A lane is composed of two differential signaling pairs, with one pair for receiving data and the other for transmitting.

ExpressCard utilizing PCI Express interface, developed by the PCMCIA group for mobile computers. PCI Express Advanced Power Management features help to extend platform battery life and to enable users to work anywhere, without an AC power source. The PCI Express electrical interface is also used in some computer storage interfaces SATA Express and M.2.

The broad adoption of PCI Express in the mobile, enterprise and communication segments enables convergence through the re-use of a common interconnect technology.

Slot

PCI-E is a serial bus which uses two low-voltage differential LVDS pairs, at 2.5Gb/s in each direction [one transmit, and one receive pair]. PCI Express supports 1x [2.5Gbps], 2x, 4x, 8x, 12x, 16x, and 32x bus widths [transmit / receive pairs].

The differential pins [Lanes] listed in the pin out table above are LVDS which stands for: Low Voltage Differential Signaling.

PCI-Express 1x Connector Pin-Out

Pin

Side B Connector

Side A Connector

#NameDescriptionNameDescription
1+12v+12 volt powerPRSNT#1Hot plug presence detect
2+12v+12 volt power+12v+12 volt power
3+12v+12 volt power+12v+12 volt power
4GNDGroundGNDGround
5SMCLKSMBus clockJTAG2TCK
6SMDATSMBus dataJTAG3TDI
7GNDGroundJTAG4TDO
8+3.3v+3.3 volt powerJTAG5TMS
9JTAG1+TRST#+3.3v+3.3 volt power
103.3Vaux3.3v volt power+3.3v+3.3 volt power
11WAKE#Link Reactivation

PERST#

PCI-Express Reset signal

Mechanical Key

12RSVDReservedGNDGround
13GNDGroundREFCLK+Reference Clock
Differential pair
14HSOp(0)Transmitter Lane 0,
Differential pair
REFCLK-
15HSOn(0)GNDGround
16GNDGroundHSIp(0)Receiver Lane 0,
Differential pair
17PRSNT#2Hotplug detectHSIn(0)
18GNDGroundGNDGround

PCI-Express 4x Connector Pin-Out

Pin

Side B Connector

Side A Connector

#NameDescriptionNameDescription
1+12v+12 volt powerPRSNT#1Hot plug presence detect
2+12v+12 volt power+12v+12 volt power
3+12v+12 volt power+12v+12 volt power
4GNDGroundGNDGround
5SMCLKSMBus clockJTAG2TCK
6SMDATSMBus dataJTAG3TDI
7GNDGroundJTAG4TDO
8+3.3v+3.3 volt powerJTAG5TMS
9JTAG1+TRST#+3.3v+3.3 volt power
103.3Vaux3.3v volt power+3.3v+3.3 volt power
11WAKE#Link ReactivationPERST#PCI-Express Reset signal

Mechanical Key

12RSVDReservedGNDGround
13GNDGroundREFCLK+Reference Clock
Differential pair
14HSOp(0)Transmitter Lane 0,
Differential pair
REFCLK-
15HSOn(0)GNDGround
16GNDGroundHSIp(0)Receiver Lane 0,
Differential pair
17PRSNT#2Hotplug detectHSIn(0)
18GNDGroundGNDGround
19HSOp(1)Transmitter Lane 1,
Differential pair
RSVDReserved
20HSOn(1)GNDGround
21GNDGroundHSIp(1)Receiver Lane 1,
Differential pair
22GNDGroundHSIn(1)
23HSOp(2)Transmitter Lane 2,
Differential pair
GNDGround
24HSOn(2)GNDGround
25GNDGroundHSIp(2)Receiver Lane 2,
Differential pair
26GNDGroundHSIn(2)
27HSOp(3)Transmitter Lane 3,
Differential pair
GNDGround
28HSOn(3)GNDGround
29GNDGroundHSIp(3)Receiver Lane 3,
Differential pair
30RSVDReservedHSIn(3)
31PRSNT#2Hot plug detectGNDGround
32GNDGroundRSVDReserved

PCI-Express 8x Connector Pin-Out

Pin

Side B Connector

Side A Connector

#NameDescriptionNameDescription
1+12v+12 volt powerPRSNT#1Hot plug presence detect
2+12v+12 volt power+12v+12 volt power
3+12v+12 volt power+12v+12 volt power
4GNDGroundGNDGround
5SMCLKSMBus clockJTAG2TCK
6SMDATSMBus dataJTAG3TDI
7GNDGroundJTAG4TDO
8+3.3v+3.3 volt powerJTAG5TMS
9JTAG1+TRST#+3.3v+3.3 volt power
103.3Vaux3.3v volt power+3.3v+3.3 volt power
11WAKE#Link ReactivationPERST#PCI-Express Reset signal

Mechanical Keycard

12RSVDReservedGNDGround
13GNDGroundREFCLK+Reference Clock
Differential pair
14HSOp(0)Transmitter Lane 0,
Differential pair
REFCLK-
15HSOn(0)GNDGround
16GNDGroundHSIp(0)Receiver Lane 0,
Differential pair
17PRSNT#2Hotplug detectHSIn(0)
18GNDGroundGNDGround
19HSOp(1)Transmitter Lane 1,
Differential pair
RSVDReserved
20HSOn(1)GNDGround
21GNDGroundHSIp(1)Receiver Lane 1,
Differential pair
22GNDGroundHSIn(1)
23HSOp(2)Transmitter Lane 2,
Differential pair
GNDGround
24HSOn(2)GNDGround
25GNDGroundHSIp(2)Receiver Lane 2,
Differential pair
26GNDGroundHSIn(2)
27HSOp(3)Transmitter Lane 3,
Differential pair
GNDGround
28HSOn(3)GNDGround
29GNDGroundHSIp(3)Receiver Lane 3,
Differential pair
30RSVDReservedHSIn(3)
31PRSNT#2Hot plug detectGNDGround
32GNDGroundRSVDReserved
33HSOp(4)Transmitter Lane 4,
Differential pair
RSVDReserved
34HSOn(4)GNDGround
35GNDGroundHSIp(4)Receiver Lane 4,
Differential pair
36GNDGroundHSIn(4)
37HSOp(5)Transmitter Lane 5,
Differential pair
GNDGround
38HSOn(5)GNDGround
39GNDGroundHSIp(5)Receiver Lane 5,
Differential pair
40GNDGroundHSIn(5)
41HSOp(6)Transmitter Lane 6,
Differential pair
GNDGround
42HSOn(6)GNDGround
43GNDGroundHSIp(6)Receiver Lane 6,
Differential pair
44GNDGroundHSIn(6)
45HSOp(7)Transmitter Lane 7,
Differential pair
GNDGround
46HSOn(7)GNDGround
47GNDGroundHSIp(7)Receiver Lane 7,
Differential pair
48PRSNT#2Hot plug detectHSIn(7)
49GNDGroundGNDGround

PCI-Express 16x Connector Pin-Out

Pin

Side B Connector

Side A Connector

#NameDescriptionNameDescription
1+12v+12 volt powerPRSNT#1Hot plug presence detect
2+12v+12 volt power+12v+12 volt power
3+12v+12 volt power+12v+12 volt power
4GNDGroundGNDGround
5SMCLKSMBus clockJTAG2TCK
6SMDATSMBus dataJTAG3TDI
7GNDGroundJTAG4TDO
8+3.3v+3.3 volt powerJTAG5TMS
9JTAG1+TRST#+3.3v+3.3 volt power
103.3Vaux3.3v volt power+3.3v+3.3 volt power
11WAKE#Link ReactivationPERST#PCI-Express Reset signal

Mechanical Key

12RSVDReservedGNDGround
13GNDGroundREFCLK+Reference Clock
Differential pair
14HSOp(0)Transmitter Lane 0,
Differential pair
REFCLK-
15HSOn(0)GNDGround
16GNDGroundHSIp(0)Receiver Lane 0,
Differential pair
17PRSNT#2Hotplug detectHSIn(0)
18GNDGroundGNDGround
19HSOp(1)Transmitter Lane 1,
Differential pair
RSVDReserved
20HSOn(1)GNDGround
21GNDGroundHSIp(1)Receiver Lane 1,
Differential pair
22GNDGroundHSIn(1)
23HSOp(2)Transmitter Lane 2,
Differential pair
GNDGround
24HSOn(2)GNDGround
25GNDGroundHSIp(2)Receiver Lane 2,
Differential pair
26GNDGroundHSIn(2)
27HSOp(3)Transmitter Lane 3,
Differential pair
GNDGround
28HSOn(3)GNDGround
29GNDGroundHSIp(3)Receiver Lane 3,
Differential pair
30RSVDReservedHSIn(3)
31PRSNT#2Hot plug detectGNDGround
32GNDGroundRSVDReserved
33HSOp(4)Transmitter Lane 4,
Differential pair
RSVDReserved
34HSOn(4)GNDGround
35GNDGroundHSIp(4)Receiver Lane 4,
Differential pair
36GNDGroundHSIn(4)
37HSOp(5)Transmitter Lane 5,
Differential pair
GNDGround
38HSOn(5)GNDGround
39GNDGroundHSIp(5)Receiver Lane 5,
Differential pair
40GNDGroundHSIn(5)
41HSOp(6)Transmitter Lane 6,
Differential pair
GNDGround
42HSOn(6)GNDGround
43GNDGroundHSIp(6)Receiver Lane 6,
Differential pair
44GNDGroundHSIn(6)
45HSOp(7)Transmitter Lane 7,
Differential pair
GNDGround
46HSOn(7)GNDGround
47GNDGroundHSIp(7)Receiver Lane 7,
Differential pair
48PRSNT#2Hot plug detectHSIn(7)
49GNDGroundGNDGround
50HSOp(8)Transmitter Lane 8,
Differential pair
RSVDReserved
51HSOn(8)GNDGround
52GNDGroundHSIp(8)Receiver Lane 8,
Differential pair
53GNDGroundHSIn(8)
54HSOp(9)Transmitter Lane 9,
Differential pair
GNDGround
55HSOn(9)GNDGround
56GNDGroundHSIp(9)Receiver Lane 9,
Differential pair
57GNDGroundHSIn(9)
58HSOp(10)Transmitter Lane 10,
Differential pair
GNDGround
59HSOn(10)GNDGround
60GNDGroundHSIp(10)Receiver Lane 10,
Differential pair
61GNDGroundHSIn(10)
62HSOp(11)Transmitter Lane 11,
Differential pair
GNDGround
63HSOn(11)GNDGround
64GNDGroundHSIp(11)Receiver Lane 11,
Differential pair
65GNDGroundHSIn(11)
66HSOp(12)Transmitter Lane 12,
Differential pair
GNDGround
67HSOn(12)GNDGround
68GNDGroundHSIp(12)Receiver Lane 12,
Differential pair
69GNDGroundHSIn(12)
70HSOp(13)Transmitter Lane 13,
Differential pair
GNDGround
71HSOn(13)GNDGround
72GNDGroundHSIp(13)Receiver Lane 13,
Differential pair
73GNDGroundHSIn(13)
74HSOp(14)Transmitter Lane 14,
Differential pair
GNDGround
75HSOn(14)GNDGround
76GNDGroundHSIp(14)Receiver Lane 14,
Differential pair
77GNDGroundHSIn(14)
78HSOp(15)Transmitter Lane 15,
Differential pair
GNDGround
79HSOn(15)GNDGround
80GNDGroundHSIp(15)Receiver Lane 15,
Differential pair
81PRSNT#2Hot plug present detectHSIn(15)
82RSVD#2Hot Plug DetectGNDGround

PRSNT#1 is connected to GND on motherboard.
Add on card needs to have PRSNT#1 connected to one of PRSNT#2 depending what type of connector is in use.

PCI-express standards

PCI Express 1.0a

In 2003, PCI-SIG introduced PCIe 1.0a, with a per-lane data rate of 250 MB/s and a transfer rate of 2.5 gigatransfers per second (GT/s). Transfer rate is expressed in transfers per second instead of bits per second because the number of transfers includes the overhead bits, which do not provide additional throughput; PCIe 1.x uses an 8b/10b encoding scheme, resulting in a 20% (= 2/10) overhead on the raw channel bandwidth.

PCI Express 2.0

PCI-SIG announced the availability of the PCI Express Base 2.0 specification on 15 January 2007. The PCIe 2.0 standard doubles the transfer rate compared with PCIe 1.0 to 5 GT/s and the per-lane throughput rises from 250 MB/s to 500 MB/s. Consequently, a 32-lane PCIe connector (×32) can support an aggregate throughput of up to 16 GB/s. PCIe 2.0 motherboard slots are fully backward compatible with PCIe v1.x cards. PCIe 2.0 cards are also generally backward compatible with PCIe 1.x motherboards, using the available bandwidth of PCI Express 1.1. Overall, graphic cards or motherboards designed for v2.0 will work with the other being v1.1 or v1.0a. Like 1.x, PCIe 2.0 uses an 8b/10b encoding scheme, therefore delivering, per-lane, an effective 4 Gbit/s max transfer rate from its 5 GT/s raw data rate.

PCI Express 2.1

PCI Express 2.1 (dated March 4, 2009) supports a large proportion of the management, support, and troubleshooting systems planned for full implementation in PCI Express 3.0. However, the speed is the same as PCI Express 2.0. The increase in power from the slot breaks backward compatibility between PCI Express 2.1 cards and some older motherboards with 1.0/1.0a, but most motherboards with PCI Express 1.1 connectors are provided with a BIOS update by their manufacturers through utilities to support backward compatibility of cards with PCIe 2.1.

PCI Express 3.0

PCI Express 3.0 specification was made available in November 2010. New features for the PCI Express 3.0 specification include a number of optimizations for enhanced signaling and data integrity, including transmitter and receiver equalization, PLL improvements, clock data recovery, and channel enhancements for currently supported topologies. PCI Express 3.0 upgrades the encoding scheme to 128b/130b from the previous 8b/10b encoding, reducing the bandwidth overhead from 20% of PCI Express 2.0 to approximately 1.54% (= 2/130). This is achieved by XORing a known binary polynomial as a scrambler to the data stream in a feedback topology. PCI Express 3.0's 8 GT/s bit rate effectively delivers 985 MB/s per lane, nearly doubling the lane bandwidth relative to PCI Express 2.0.

PCI Express 4.0

PCI Express 4.0 was officially announced on 2017, providing a 16 GT/s bit rate that doubles the bandwidth provided by PCI Express 3.0, while maintaining backward and forward compatibility in both software support and used mechanical interface. PCI Express 4.0 specs will also bring OCuLink-2, an alternative to Thunderbolt connector. OCuLink version 2 will have up to 16 GT/s (8 GB/s total for ×4 lanes), while the maximum bandwidth of a Thunderbolt 3 connector is 5 GB/s. Additionally, active and idle power optimizations are to be investigated.

Summary :

There are different slots that you can choose, such as SATA, but the most popular slot now is the M.2 slot. Then what is an M.2 slot and what can it do? In this post, MiniTool provides you with detailed information about the M.2 slot.

What Is an M.2 Slot?

To begin with, what is an M.2 slot? The M.2 format, formerly known as Next Generation Form Factor (NGFF), is technically a replacement for the mSATA standard, which was very popular among manufacturers of ultra-compact laptops and other small accessories. The M.2 format is specially designed for manufacturers to replace various specific devices.

What Can M.2 Slot Do?

M.2 may completely replace all aging Serial ATA formats. The M.2 slot can interface with SATA 3.0 (the cable that may be connected to the storage drive of the desktop), PCI Express 3.0 (the default interface for graphics cards and other major expansion devices), and even USB 3.0.

This means that maybe any storage or disk drive, GPU or port extension, or low-power gadget using USB connection can be installed on the card that plugs into the M.2 slot at the same time. But the actual situation is much more complicated.

When you are using the PCI bus instead of the SATA bus, depending on the function of the motherboard and the M.2 card itself, M.2 devices can transfer data 50% to about 650% faster than standard SATA.

If you have the opportunity to use an M.2 SSD on a motherboard that supports PCI third generation, its speed may be much faster than conventional SATA drives.

Tip: You may be interested in this post - What Is SATA Hard Drive? SATA Hard Drive Recovery.

What Devices Use the M.2 Slot?

Currently, M.2 is mainly used as an interface for ultra-high-speed SSDs on laptops and desktops. Some laptop designs also adopt the M.2 port as a wireless connection. This is not very common for desktop computers, which generally prefer to use a USB dongle or PCIe 1x card (although there is no reason why you cannot do this on a compatible motherboard).

1x Slots Login

And some companies have begun to expand the use of M.2 slots to categories that are not suitable for storage or expansion. Although no one has yet manufactured an M.2 graphics card, Intel is selling its Optane, a speed-up cache storage device in M.2 format, to consumers.

Does Your Computer Have an M.2 Slot?

If your PC was manufactured or assembled in recent years, it may have an M.2 slot. Unlucky, the flexibility of the format means that using it is not as easy as inserting a card.

The M.2 card has two main compatibility variables: length and key. The first one is obvious - your computer needs to have enough physical space to support the length of the card you want to use. The second is variable - the card’s connector must match the slot you want to insert.

Can You Add an M.2 Card If Your Computer Doesn’t Have an M.2 Slot?

If you are using a laptop, then you can't. The design of modern laptops is so compact that there is no room for unplanned expansion. If you use a desktop computer, then it’s OK for you. Adapters sold in large quantities already use the PCIe x4 slot on your motherboard.

However, if your motherboard cannot boot from PCIe, then you cannot set the M.2 drive as the boot drive, which means you will not benefit from a lot of speed. So you should know that if you want the full advantages of the M.2 hard drive, you may need a motherboard that supports this motherboard.

If you don’t know how to boot from M.2 SSD, this post is what you need. This post demonstrates how to install Windows 10 on M. 2 SSD and how to boot from M.2.

Bottom Line

1x Clothing

This post has given you most information about the M.2 slot, such as what it is and what it can do. If your laptops don’t have an M.2 slot, then you cannot add an M.2 card. But you can do that if you are using desktops.